
Processor Arch: Pipelined

Memory Hierarchy
MADE BY: Zhong Zhineng & Song Yixin

Processor Arch: Pipelined

• Throughput and latency change

Pipeline Basics

• Critical moments

Pipeline Basics

• Limitations of pipelining

• Nonuniform partitioning

• Decreasing returns to pipeline depth

• Stages

• AMD Zen2(3th Gen Ryzen): 19 stages

• Intel Ice Lake(10th Gen core): 14-19 stages

Pipeline Basics

SEQ->SEQ+

• Circuit retiming

• PC update stage

• No hardware PC registers

SEQ->SEQ+

SEQ+->PIPE-

• Adding pipeline registers

• Select PC

• Select A: Since valP is only used

in the Memory period of call

and in the Execute period of jXX

and both of them do not need

valA, Select A module is used to

reduce the number of registers.

SEQ+->PIPE-

• Data hazard

• Control hazard

Problems:Data/Control Dependency

Handling

data

hazard

Handling

control

hazard

A Simple Solution: Bubbles and Stalls

Another Solution: Forward

• Need the data that

has not written back

to the registers

when decoding.

• Principle: Try to

use forward. If

failed, use stall.

• Sel+Fwd A

• Fwd B

HCL:

Modified HCL: Select PC & Fetch

HCL:

Pay attention to the choice order!

Modified HCL: Decode & Write back

Modified HCL: Execute

HCL: left out

Modified HCL: Memory

HCL: left out

Hazard: Load/Use

• You cannot only use forwarding to solve all the problems…

• Last instruction reads data from memory to a register, and present

instruction needs the data in this register.

• Must stall and insert a bubble, then forward from memory stage.

Hazard: ret

• The PC of the next instruction of ret will be known until memory stage.

• Insert three bubbles.

Hazard: Branch Misprediction

• After Execute stage, the right branch will be known.

• Insert two bubbles.

Hazard Combination

Hazard Detection & Control

Implementing Pipeline Control

Memory Hierarchy

Example

• RAM: SRAM & DRAM

• Disk

• Bus structure

Storage Technology

• Random Access Memory (RAM)
• Volatile, expensive, compared to hard disk

• SRAM versus DRAM
• SRAM doesn’t need refresh

• faster and stable, more expensive

• used as cache memories

• DRAM
• higher density, lower power consumption

• used as main memory

RAM

• Row Access Strobe (RAS)

• Column Access Strobe (CAS)

• Memory module: Read & Write a word

• FPM DRAM, SDRAM, DDR SDRAM

DRAM: Access

• nonvolatile, compared to RAM

• PROM: only programmed once

• EPROM

• EEPROM -> flash memory

• firmware: stored in ROM

ROM

• Bus transaction: read and write

• System bus: connecting CPU and I/O bridge

• Memory bus: connecting I/O bridge and main memory

• I/O bus: disk, graphic card and other buses

BUS

• Capacity:

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = #
𝑏𝑦𝑡𝑒𝑠

𝑠𝑒𝑐𝑡𝑜𝑟
∗ #

𝑎𝑣𝑔.𝑠𝑒𝑐𝑡𝑜𝑟𝑠

𝑡𝑟𝑎𝑐𝑘
∗ #

𝑡𝑟𝑎𝑐𝑘𝑠

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
∗ #

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠

𝑝𝑙𝑎𝑡𝑡𝑒𝑟
∗ #

𝑝𝑙𝑎𝑡𝑡𝑒𝑟𝑠

𝑑𝑖𝑠𝑘

• Access time:
• avg seek time + avg rotation time + avg transfer time

DISK

• K(kilo), M(mega), G(giga), T(tera): context dependent

• DRAM & SRAM: 𝐾 = 210, 𝑀 = 220, 𝐺 = 230, 𝑇 = 240

• Disk & network: 𝐾 = 103, 𝑀 = 106, 𝐺 = 109, 𝑇 = 1012

Unit Conversion

• Solid State Disk (SSD)

• Sequential access faster than random access

• Write slower than Read

• Modifying a block page requires full page erasure and copy

SSD

Developing Tendency

• Temporal locality

• Spatial locality

• Data-access: temporal locality or spatial locality:
• The smaller the step length, the better the spatial locality.
• Repeating references to the same variable has the temporal locality.

• Instruction-fetch: both locality:
• The smaller the loop body and the more the number of iteration, the

better the locality.

Locality

Thanks for listening.

